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ABSTRACT

Although hybridization and introgression have been considered important in gen-
eration of plant diversity, their role in evolutionary diversification of animals re-
mains unclear. In this review, we reconsider the significance of introgressive
hybridization in evolution and diversification of animals to determine if the gen-
erally negative assessment of these processes is warranted. Unlike the situation
for plants, hybrid animal taxa appear to be relatively rare. This could, however,
be due to negative attitudes toward hybridization and difficulty in detecting such
forms. Hybridization has been responsible for instantaneous creation of several
unique complexes of polyploid and unisexual animals. Allopolyploidy has al-
lowed for diversification, whereas unisexual taxa have acted as conduits of gene
exchange among related sexual species. Many instances of diploid, bisexual
taxa of hybrid origin have been put forward, but few have been carefully tested.
Changing attitudes toward hybrids and technological advances should allow for
careful consideration of hypothesized hybrid taxa and will undoubtedly increase
the number of known animal hybrid taxa.

INTRODUCTION

Around the time of the neo-Darwinian synthesis, considerable effort was di-
rected toward understanding the origin of taxonomic diversity. This work
led to several central principles, such as the importance of geographic iso-
lation (82, 83) and selection for reproductive isolation (33). Several of these
tenets have since come under scrutiny (e.g. 15, 19, 40, 63, 77, 91, 156), leading
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to renewed interest in the processes generating and maintaining organismal di-
versity. Gene exchange among animal species has been more common than
previously believed, opening the door to several new avenues of evolutionary
research. Hybrid zones have been used for study of evolutionary processes
(54, 55, 59), providing insight into processes responsible for patterns of geo-
graphic variation among taxa and maintenance of their distinctiveness. The
genetics of reproductive isolation is still poorly understood, but experimental
hybridization studies have allowed for identification of specific genetic changes
responsible for species differences and reduced fitness of hybrids (25, 114, 158).

While hybridization and introgression have been deemed important by bota-
nists (7a, 113, 114), zoologists have not seriously considered the significance
of these factors in the evolutionary process. Anderson & Stebbins (6) summa-
rized views toward the significance of hybridization in plant evolution. They
hypothesized that introgression and hybridization could transfer blocks of genes
among stabilized, adapted groups, permitting rapid reshuffling of varying adap-
tations and complex modifier systems. In this way, levels of variation would be
greatly increased, and selection would be able to act upon segregating blocks
of genic material derived from different adaptive systems instead of one or two
new alleles generated by mutation. This set of circumstances would be par-
ticularly advantageous where new ecological niches are created by changing
environments, allowing evolution to proceed at “maximum rate.”

One possible outcome of horizontal transfer of genetic variation among lin-
eages would be creation of taxonomic diversity. Although this process has been
considered important in generation of plant diversity (53), the role of hybridiza-
tion in evolutionary diversification of animals remains unclear. Grant (53) noted
that “several generations of zoologists have concluded that hybridization does
not play an important role in animal evolution,” with this perspective based
upon “a store of background knowledge that should not be dismissed lightly”
(p. 161).

With this caution in mind, we reconsider the significance of introgressive
hybridization in the evolution and diversification of animals to determine if the
generally negative assessment of these processes is warranted. This is achieved
by placing perceptions of hybridization and introgression in historical perspec-
tive, followed by an assessment of hybrid origins of animal taxa and evaluation
of the potential role for these factors in evolutionary diversification. It is im-
possible for such a review to be exhaustive because many suggestions of hybrid
origin are presented as digressions in papers dedicated to taxonomic treatments
or studies of hybridization. Therefore, we address conceptual issues to stimu-
late further consideration of the role for hybridization in the diversification of
animals.
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DEFINITIONS

We choose to focus on hybridization and introgression as processes, bypassing
conceptual difficulties associated with defining categorical units (e.g. species)
involved (139). Hybridization is defined as “the interbreeding of individuals
from two populations, or groups of populations, which are distinguishable on the
basis of one or more heritable characters” (55, p. 5), and introgression is “the
permanent incorporation of genes from one set of differentiated populations
into another, i.e. the incorporation of alien genes into a new, reproductively
integrated population system” (115, p. 71).

Definition of hybrid taxa is difficult, as selection of criteria for placing groups
into specific taxonomic categories (e.g. subspecies, species, genera) will suffer
from the same difficulties associated with nonhybrid species, reflecting the bias
of the user in determining the quantity and type of differences necessary for
taxonomic recognition (40). This is particularly problematic for hybrid taxa as
boundaries defining species are semipermeable (54), and the extent and persis-
tence of introgression may vary among genes. In addition, recent technological
advances (61) allow for fine-scaled examination with many loci, identifying
unusual patterns of introgression (e.g. 7a, 36, 42, 79, 115). Therefore, the ex-
tent of introgressive hybridization at any locality might occur anywhere along
a continuous distribution of possibilities, ranging from introgression at one
locus [e.g. mitochondrial DNA (mtDNA)] to enough loci that populations be
recognized as distinct taxonomic entities.

Given these difficulties, we define hybrid taxa in terms of the processes
generating them: the derivation of features by horizontal transfer from multiple
independent lineages at some point in their history. Under this guise, a hybrid
taxon is an independently evolving, historically stable population or group
of populations possessing a unique combination of heritable characteristics
derived from interbreeding of representatives from two or more discrete units
(e.g. races, subspecies, species, etc). Historical stability implies that the mosaic
of characters inherited from independent lineages is retained in the population,
passed on from parent to offspring.

Stability and evolutionary independence are essential for distinguishing taxa
of hybrid origin from instances of ongoing hybridization among taxa. Unfor-
tunately, these features are difficult to evaluate. Stability can be based only on
human perceptions of longevity, typically from collections that cover 300 years
at most. Where taxa are allopatric, evolutionary independence is often based on
degree of divergence. Thus, these criteria are open to subjective interpretation,
producing a situation analogous to evaluation of specific status for allopatric
forms.
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HISTORICAL PERSPECTIVE

The significance of hybridization and introgression for animals has not been the
subject of any major review; however, the topic has received cursory coverage
in a variety of texts and articles (e.g. 15, 113). This limited coverage seems to
result largely from the ideas and perspectives of prominent researchers working
at the time of the modern synthesis. This sentiment is summarized by Fisher
(44): “The grossest blunder in sexual preference, which we can conceive of
an animal making, would be to mate with a species different from its own. . .”
(p. 144).

Dobzhansky (32) recognized the importance of allopolyploidy (i.e. elevation
of chromosome numbers due to hybridization of two or more species) to evo-
lution, but he noted that the rarity of allopolyploids “constitutes the greatest
known difference between the evolutionary patterns in the two kingdoms” (32,
p. 219). Introgressive hybridization was considered to occur more frequently
in plants than in animals, possibly due to greater attention paid to this prob-
lem by botanists. He also noted that “hybrid swarms” may reflect inheritance
of shared polymorphism from a variable common ancestor, not exchange of
genes among species. In a later work, Dobzhansky (34) discussed reasons for
differences in the frequency of introgressive hybridization between plants and
animals. Vegetative and asexual reproduction found in many plants provides for
longer life and increased spreading capacity of individuals (or clones), whereas
sexual reproduction maintains evolutionary plasticity. In addition, the greater
complexity of tissues and organ systems in animals may require that the adap-
tive value of genotypes depends upon integration of a larger constellation of
genes than for plants (with their simplified tissues and open systems of growth).
These features would constrain the number of adaptive recombinants in ani-
mals, reducing the frequency of hybridization and increasing the importance of
reproductive isolation.

One of the most outspoken and influential opponents of a significant role for
hybridization and introgression in evolution was Mayr (82, 83). He acknowl-
edged that animal species could arise instantaneously through allopolyploidy,
but the rarity of hybridization in animals made this process much less important
than for plants. Transformation or fusion of species by introgression was also
viewed as implausible, especially when the parental species continue to exist.
Since hybrids would exhibit less reproductive isolation than their progenitors,
they would have to remain geographically isolated until they could maintain
their integrity. In light of this perspective, Mayr argued that combinations of
characters from putative parental species and morphological intermediacy are
inadequate for identification of hybrid species because of both the polygenic
nature of these characters and the developmental stability of interactions among
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genes resulting in the phenotype. A more plausible explanation was the evolu-
tion of such intermediate forms from a single, polymorphic ancestor.

Mayr also provided several objections to the view that introgression signifi-
cantly increased genetic variability in animal populations. Hybrid animals are
rare in nature, even in groups that have been extensively studied. Where F1
hybrids occur, they tend to be sterile or to exhibit reduced fertility. Hybrid
and backcross individuals would also suffer reductions in fitness because gene
exchange breaks up “internally balanced chromosome sections,” resulting in
elimination of these individuals and “severe selection against introgression.”
In his view, “the total weight of the available evidence contradicts the assump-
tion that hybridization plays a major evolutionary role among higher animals”
(83, p. 133).

Recently, some zoologists have become more open to a significant role for hy-
bridization in the evolutionary process, including the formation of new species.
Stebbins (140) contrasted the variation in perceived significance of hybridiza-
tion in the evolution of plants and animals. Because the proportion of successful
progeny segregating from hybrids is much lower for animals (due to complex
patterns of development controlled by more intricate and integrated complexes
of genes than found in plants), zoologists have downplayed the significance of
introgression. Stebbins noted that rare gene combinations can establish rapidly;
therefore, hybridization may have played a larger role in the evolution of ani-
mals than is recognized.

In his evaluation of mechanisms of speciation, Templeton (143) contemplated
the production of new species by hybridization. Genetic and structural incom-
patibilities associated with unisexual reproduction and polyploidization were
considered important means for maintenance of hybrid taxa. Conditions for
stabilization of hybrid recombinants were also described. Under his scenario,
hybridization is followed by inbreeding and hybrid breakdown. If recombi-
nants with the greatest viability and fertility are able to survive, they could
become reproductively isolated from both parental forms and become distinct
entities. Hybridization followed by inbreeding could enhance mutation rates in
recombinants, leading to increased divergence from parental forms, especially
where the population of recombinants is geographically isolated. Divergence
is required for coexistence; otherwise the new form could be swamped out by
gene flow or eliminated through competition. On the basis of several experi-
mental studies, Templeton suggested that this mode of speciation can occur and
does not require the evolution of postmating barriers between recombinants and
parental taxa.

The potential significance of introgressive hybridization in animal evolution
was supported experimentally by Lewontin & Birch (73). They hypothesized
that dramatic range expansion of an Australian fruit fly (Dacus tryoni) occurred
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through adaptation to extreme temperatures, with genetic variation obtained
through introgression with a closely related species,D. humeralis. This possi-
bility was tested by maintaining “pure” and “hybrid” populations initiated from
D. tryoni and F1 hybrids betweenD. tryoni andD. humeralis, respectively, at a
series of optimal and extreme temperatures. Hybrid populations initially pro-
duced fewer pupae than did pure lines ofD. tryoni, but there was no difference
in this feature or morphological characteristics by the end of the experiment,
around two years later. Despite these similarities, hybrid lineages were found
to increase more rapidly at higher temperatures, indicating that introgression of
alleles allowed for adaptation to extreme warmth. As Lewontin & Birch note,
these results do not prove thatD. tryoni became adapted through introgressive
hybridization, only that such a series of events could have been involved.

Several ornithologists have indicated that introgressive hybridization has
been important in avian evolution. Estimates of hybridization among bird
species range from 9% worldwide (50) to 15% for the Nearctic fauna (126).
Short (125) noted that introgressive hybridization preserved genetic variation
of each progenitor in hybrids, making “such forms ‘preadapted’ by virtue of
introgressive hybridization.” In most instances dispersal has made it difficult
to ascertain the fate of hybrids; however, detailed studies of Darwin’s finches
allowed Grant & Grant (51, 52) to conclude that introgressive hybridization
plays a greater role in the evolution of animals than previously believed.

MODES OF HYBRID ORIGIN

Both hybridization and introgression have been hypothesized to enhance animal
diversity, but differences between these processes require they be considered
separately. Hybridization may directly produce distinct taxa, either through
polyploidization or generation of clonally reproducing unisexual lineages. Al-
ternatively, introgression could eventually lead to stable, independent lineages
definable by unique combinations of characteristics. In either case, taxonomic
diversification is best viewed as an incidental by-product, resulting from ac-
cumulation of genetic differences that confer distinctiveness and evolutionary
independence.

Given problems associated with defining taxa of hybrid origin, assessment
of a possible role for hybridization and introgression in the generation of taxo-
nomic diversity is difficult. Nevertheless, reticulate origins have been invoked
for many taxa, and it is important to determine the extent to which gene ex-
change has played a role in generation of taxonomic diversity.

Diversification by Hybridization
Hybridization can instantaneously produce distinct animal taxa in two ways,
through increase in chromosome number (allopolyploidy) or through conversion
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to an essentially all-female (unisexual) mode of reproduction. These two path-
ways can be difficult to separate as most animal allopolyploids are hermaphro-
ditic or unisexual while many all-female complexes include polyploids.

All-female reproductive systems occur in three general forms, parthenogen-
esis, gynogenesis, and hybridogenesis (27). In parthenogenesis, females repro-
duce progeny essentially identical to themselves (barring mutation) without
involvement of males. Gynogenetic and hybridogenetic forms require sperm to
initiate egg development. In gynogenesis, fertilization only serves to stimulate
development, with sperm nuclei excluded. In hybridogenesis, true fertilization
occurs and paternal genes are expressed; however, only the maternal lineage is
transmitted to the next generation.

Hybrid lineages have typically been identified by morphological intermedi-
acy, increased heterozygosity at nuclear gene loci (usually allozymes), and/or
excess amounts of DNA in multiples of the standard complement (e.g. 3N,
4N, etc.) obtained through standard karyotypic methods or measurement of
DNA content. Mitochondrial DNA variation has been used to identify ma-
ternal lineages; however, it does not allow for recognition of hybrids unless
applied in conjunction with other characters (e.g. allozymes, karyotypes, mor-
phology). Application of these methods has provided a number of excel-
lent examples in many groups of animals, each with their own unique fea-
tures. Instead of recounting extensive reviews of polyploid and unisexual taxa
(11, 14, 29, 76, 122, 156), important concepts are summarized below and new
cases and updated references are provided in Table 1.

THEORETICAL CONSIDERATIONS The role of hybridization in the production
of polyploid animal lineages has sometimes been difficult to determine. Al-
lopolyploids have typically been distinguished from autopolyploids (in which
multiple sets of chromosomes are derived from the same ancestral species)
by the lack of multivalent sets of chromosomes or disomic inheritance of al-
lozymes. Unfortunately, the distinction between these categories is not always
clear. White (156) noted that multivalents, e.g. structures formed by associ-
ation of more than two chromosomes during meiosis, have been identified in
diploid organisms, possibly due to translocation heterozygosity. In addition,
autotetraploids become functionally diploid over time (105). Therefore, older
autopolyploids could exhibit fewer multivalents (11) and multisomic loci than
expected; however, salmoniform fishes are ancient autotetraploids that have not
become diploidized (4). Conversely, one could imagine a scenario in which hy-
bridization among closely related but distinct taxa could result in polyploids that
form multivalents and have multisomic inheritance, reducing the effectiveness
of these characteristics for discriminating among these modes of origin.

Allopolyploid plants have been thought to be more common than autopoly-
ploids because of increased fitness attained through their hybrid constitution,
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Table 1 Hypothesized examples of asexual and polyploid taxa of hybrid origin

Mode of
Taxonomic complex Ploidy reproductiona Referencesb

Platyhelminths
Paragonimus westermani 3N, 4N ? 1, 3
Fasciolasp. 2N, 3N P 2

Mollusks
Lasaeaspecies complex 3N-6N G 104
Bulinus truncatuscomplex 2N, 4N, 8N P or S? 47
Campeloma decisum ? P 66
Ancylus fluviatilis 4N P or S? 138

Insects
Bacillusspecies complexes 2N, 3N P, H 13, 145
Curculionidae 2N-10N P, G/H? 101, 120
Simuliidae 3N P 118

Crustaceans
Daphnia pulexcomplex 2N, 4N P 30
Cyprinotus incongruens 3N P 146
Trichoniscus pusillus pusillus 3N P 144

Fishes
Fundulus heteroclitusXdiaphanus 2N G 28
Phoxinus eos-neogeauscomplex 2N, 2N/3N, 3N G 45, 46
Poeciliacomplex 2N, 3N G,? 9, 121, 132
Poeciliopsiscomplex 2N, 3N G, H 109, 152
Rutilus alburnoidescomplex 2N, 3N ? 5
Family Catostomidae 4N B 128, 147
Cobitiscomplexes 3N, 4N G 124, 148, 149

Amphibians
Ambystomacomplexes 2N-5N G?, H? 58, 69, 70, 134, 135
Bufo danatensis 4N B 88
Hyla versicolor 4N B 80, 108, 112, 116
Rana esculentacomplexes 2N, 3N H 62

Reptiles
Cnemidophorouscomplexes 2N, 3N P 20, 96, 127, 154
Gymnophthalmus underwoodi 2N P 21, 22, 160
Hemidactylus garnotti 3N P 94, 111
Heteronotia binoei 3N P 92
Kentropyx borckiana 2N P 23
Lacertacomplex 2N, 2N/3N, 3N P 95
Lepidodactylus lugubris 2N, 3N P 94, 110, 111, 150
Nactus pelagicus 2N P 35

aAbbreviations for modes of reproduction are: G, gynogenetic; H, hybridogenetic; P, partheno-
genetic; S, self-fertilizing hermaphrodite; B, bisexual; ?, uncertain.

bAdditional references may be found within those cited.
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allowing for adaptation to a wider range of environments provided by multiple
sets of genes. Using this information, White (156) reasoned that allopolyploid
animals were also more likely to establish than autopolyploids. In any case, he
concluded that polyploids are far less common in animals than plants.

The rarity of allopolyploid animals has been attributed to their systems of
sex determination, with polyploidization directly interfering with sex determi-
nation (97) or indirectly affecting fitness through disruption of dosage compen-
sation of sex-linked genes (106). White (156) concluded that the occurrence
of polyploidy may also be constrained by modes of reproduction, particularly
in those groups not exhibiting heterogametic sex determination. Many animals
are obligate outcrossers, with polyploid progeny of hybridization events typi-
cally tetraploid. Such hybrids would most likely mate with diploids, producing
sterile triploids. Therefore, polyploidy would be most likely found in groups
exhibiting hermaphroditic or all-female modes of reproduction.

White (156) estimated that only 1 of every 1000 “species” of animals pos-
sessed all-female reproductive systems, many of which resulted from hybridiza-
tion. The relative infrequency of hybrid asexual taxa has been attributed to
severe ecological and genetic constraints on the origin and maintenance of
such lineages. Moritz et al (93) argued that the chance of a hybrid founding a
unisexual lineage is determined by a balance of genetic factors affecting the dis-
ruption of meiosis and the remainder of the developmental program, reducing
the window in which hybrids can become unisexual lineages. As parental taxa
diverge, genes regulating meiosis change. Combination of different alleles in F1
hybrids may result in disruption of meiosis, increasing the proportion of unre-
duced ova generated in these individuals and possibly allowing for unisexual
reproduction. At some point, parental taxa become too divergent, with genetic
changes dramatically reducing fecundity and viability of hybrid offspring and
also reducing the likelihood of establishment of unisexual lineages.

Once unisexual hybrids surmount genetic barriers to formation, a variety of
genetic, ecological, and evolutionary constraints must be overcome (151, 152).
Clonal transmission will result in accumulation of deleterious mutations (98)
leading to “mutational meltdown” and relatively rapid extinction of such lin-
eages (78). Pseudogamous (i.e. gynogenetic, hybridogenetic) taxa require con-
tribution of sperm from compatible host taxa. Since these lineages are clonal,
unisexual populations will be locked into certain niches that may place them at
risk through competition with their bisexual progenitors or an inability to adapt
to changing environments.

INFERENCE FROM DIPLOID AND POLYPLOID UNISEXUAL LINEAGES Polyploidy
is typically associated with asexual reproduction and self-fertilization,
especially in invertebrates (76, 156), likely due to increased probability of
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establishment for such forms. In vertebrates, virtually all unisexual taxa have
documented hybrid origins (153). Polyploid and unisexual lineages are often
more widely distributed than their parental taxa, possibly indicative of advan-
tages provided by their increased variability and mode of reproduction (151).

Allopolyploid and hybrid unisexual origins are more common than previ-
ously believed. Molecular methods have documented multiple origins for many
polyploid and unisexual lineages, indicating that these phenomena are not ac-
cidents but reflect some general aspects of the interaction of parental genomes.
Multiple origins are often attributable to several hybridization events, and re-
ciprocal crosses may produce different results. Hybridization of maleDaph-
nia pulicaria and femaleD. pulexproduces diploid parthenogenetic lineages,
whereas tetraploid parthenogens are produced by the reciprocal cross (38a). In
some instances, only one species may serve as the maternal parent, indicating
specific combinations may be necessary for production of such lineages.

Diverse complexes of clonal lineages often develop, due to genetic differ-
ences among bisexual parents. Hybridization of polyploids or unisexuals with
bisexual diploids (sometimes a third taxon) has led to variation in ploidy level
and/or mode of reproduction as well as allelic differences (e.g.Bacillus, Buli-
nus, Cobitis, Phoxinus, Ambystoma, Cnemidophorus). This diversity is likely
to increase the probability of establishment and persistence as demonstrated by
studies of unisexual forms of topminnow,Poeciliopsis(151, 152). This com-
plex includes diploid hybridogenetic and triploid gynogenetic groups of clones
produced by a variety of hybridization events involvingP. monachaand some
combination of four other species:P. latidens, P. lucida, P. occidentalis,and
P. viriosa.Genetically distinct clonal lineages have different life-history, physi-
ological, and ecological characteristics, allowing multiple clones to coexist and
occupy at least part of the potential niche of the sexual species.

In some cases, hybrid origins have been attributed to other factors. Johnson
(66) examined the evolution of parthenogenesis in the hermaphroditic snail
Campeloma decisum. Unisexual reproduction was thought to have evolved
spontaneously in some populations due to a parasitic trematode that ingests or
blocks sperm. Fixed homozygosity at 19 allozyme loci supported this hypoth-
esis for a subset of populations; however, all individuals from several localities
were heterozygous at six loci that were fixed or nearly fixed allelic differences
between eastern and western populations, implicating a hybrid origin for a
subset of parthenogenetic populations. Dufresne & Hebert (38a) found that
homozygous parthenogenetic clones ofDaphnia pulexthought to be autopoly-
ploid possessed mtDNA ofD. middendorffiana. They concluded that these
clones originated through hybridization with expulsion of the nuclear genome
of the female parent while retaining mtDNA.

Asexual lineages have been considered dead-ends, not persisting long enough
to contribute to the evolutionary process; however, recent studies have called
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this view into question. DNA variation has been used to suggest that several
unisexual lineages are older than previously believed (e.g. 58, 109, 134). Un-
fortunately, difficulties in accurate dating of divergence have an impact on the
utility of such estimates. Failure to include the maternal progenitor will in-
flate estimates, requiring extensive samples to maximize chances of including
the maternal parent and accurate characterization of geographic variation. For
mtDNA, most estimates of divergence time are based upon a standard calibra-
tion. These are not likely accurate due to tremendous variation in rates of evolu-
tion across groups (e.g. 8, 80). Worst of all, divergence of alleles could predate
(or postdate) speciation events (100), reducing the utility of such estimates.

The most significant contribution of unisexual lineages may be their ability
to act as conduits for gene exchange among bisexual forms (e.g.Ambystoma,
Bacillus, Phoxinus, Rana). Some members of thePhoxinus eos-neogaeus
complex exhibit unusual modes of reproduction that could lead to gene exchange
among parental taxa (46). The two triploid individuals examined produced
haploid eggs that were fertilized byP. eos. Progeny were indistinguishable
from P. eoson the basis of allozymes and external morphological traits, but
mtDNA of all (KA Goddard, personal communication) and gut morphology of
some was likeP. neogaeus. Sex ratios of resulting progeny were approximately
1:1, and males appeared normal. Unfortunately, their ability to successfully
reproduce was not determined. If such males are fertile, their contribution
could lead to increased genetic diversity in the bisexual species.

Bogart (12) discussed evidence for transfer of alleles among four species
of Ambystomaand reconstitution of parental forms. The existence of certain
genotypic combinations was consistent with reconstitution; however, analysis
of such individuals from a single egg mass indicated reconstituted individu-
als may suffer from increased mortality due to karyotypic anomalies (142).
Bogart concluded that circumstantial evidence supported a potentially signifi-
cant role for unisexuals in the evolutionary process. Unisexuality increases the
opportunity for selection to act upon various recombinant gene combinations
by maintenance of these variants for longer periods of time than otherwise pos-
sible. He further hypothesized that the ultimate outcome could be a population
of bisexuals with mosaic genotypes superior to the parental and hybrid forms.
This prediction has come to fruition inPoeciliopsis,in which a clone of the hy-
bridogenP. monacha-occidentalishas reverted to sexuality. This new bisexual
species contains a mosaic of genetic features from its parental contributors and
occupies a unique niche (152), implicating a significant role for unisexual taxa
in the evolutionary process.

INFERENCE FROM BISEXUAL POLYPLOID LINEAGES Despite expected difficul-
ties of formation associated with outcrossing, several bisexual polyploid lin-
eages have been generated by hybridization. Identification of polyploid lineages
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has not always been simple, and some hypothesized cases have been contro-
versial. White (156) rejected most instances of polyploidy in obligate sexual
lineages, indicating that the best examples are provided by fishes and anurans.
Among fishes, bisexual polyploids have been reported from five orders, with
two extensively studied (16, 122). While salmoniforms are considered autote-
traploid (4), allopolyploidy has been hypothesized for three cypriniform fami-
lies: Catostomidae, Cobitidae, and Cyprinidae. The catostomids are a widely
distributed group of more than 60 tetraploid species exhibiting disomic inher-
itance (41, 128). Their success has been obtained through diversification and
adaptation to a variety of habitats, with representatives found in most streams,
rivers, and lakes of North America and parts of Asia. Uyeno & Smith (147)
hypothesized that, given the extent of polyploidy, the entire family descended
from a cyprinid-like lineage approximately 50 Mya.

In cobitids, tetraploids are found in three separate groups, but only indirect
evidence supports their hybrid origin (149). Ferris & Whitt (43) theorized that,
based on levels of duplicate gene expression in tetraploid cobitids from the
genusBotia, the polyploidization event was likely more recent than that giving
rise to the catostomids. In their review of cyprinids, Buth et al (17) noted that 52
taxa were polyploid. Most of these are members of the subfamily Cyprininae,
identified through analyses of karyotypes and genome sizes. Chromosome
counts in nearly all cyprinid polyploids occur in multiples or combinations of
the most common karyotypes (48 or 50 chromosomes); thus it was speculated
that tetraploids (96, 98, or 100 chromosomes) and hexaploids (148 and 150
chromosomes) arose through hybridization involving pairs of diploid taxa or
diploid and tetraploid taxa, respectively.

Smith (128) identified several morphological characters uniting catostomids
and cyprinines, consistent with a single origin of tetraploidy for these two
groups. Collares-Pereira & Coelho (24) used evidence of polyploidy in all
three families to suggest that the entire order was derived from a single poly-
ploid ancestor; however, this is inconsistent with the distribution of polyploidy
throughout the families and relative timing of events obtained from levels of
duplicate gene expression.

The only amphibian bisexual polyploids (3N-8N) are anurans, with inci-
dence more phylogenetically restricted than for fishes (11). Hybridization has
been implicated in several instances, but not without debate. A prime exam-
ple of this difficulty is provided by North American tree frogs. DiploidHyla
chrysoscelisis subdivided into eastern and western populations by the tetraploid
H. versicolor.These two species are generally allopatric, but co-occur in sev-
eral narrow contact zones throughout the eastern United States.Hyla versicolor
has been considered autopolyploid due to the presence of quadrivalents (11)
and lack of allozymic variation consistent with specific status of the presumed
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progenitors, eastern and westernH. chrysoscelis(112, 116); however, immuno-
logical and allozymic data have also been used to support a hybrid origin
(11, 81). Ptacek et al (108) provided mtDNA evidence supporting multiple
origins ofH. versicolor; thus, available evidence is not consistent with hybrid
origins for this form.

Diversification by Introgression
Formation of new taxa by introgressive hybridization involves different cir-
cumstances than those described above. Gene exchange among taxa produces
groups of recombinant individuals that eventually stabilize to form an evo-
lutionarily independent, sexually reproducing taxon. This process has been
hypothesized to include a variety of geographic scales, ranging from complete
fusion of taxa to stabilization of local hybrid populations. Diversification is
not instantaneous as recombinant lineages must be geographically isolated for
long enough to evolve genetic differences that maintain independence and allow
coexistence with parental forms.

Stable recombinant taxa have been hypothesized on the basis of several types
of characters, including morphology, chromosomes, allozymes, and DNA. Hy-
brids have been expected to be intermediate to parental forms for complex fea-
tures such as morphological variation. However, F1 hybrids are not always mor-
phologically intermediate between their progenitors (99, 117), whereas not all
morphological intermediates are hybrids (156, 157). For example, morpholog-
ical characteristics of recent year classes of the endangered suckerChasmistes
cujuswere intermediate between older fish andCatostomus tahoensis, leading
to concerns over human-induced hybridization. Analysis of allozymic varia-
tion failed to detect introgressed alleles in the youngerC. cujusor to identify
significant differences among younger and older representatives of this species,
indicating that morphological differences reflect ontogenetic variation (18).

For more simplistic characters, (e.g. allozymes, karyotypes), the popula-
tion should consist of an equilibrium distribution of variants contributed by all
parental forms. Because the proportion of specific variants will be influenced
by selection and drift, parental contributions may not persist for all character
sets but could be represented by fixation for different diagnostic traits (e.g.
alternate diagnostic alleles at two or more allozyme loci, mtDNA from one
parental taxon and allozymic variants from the other). Therefore, hybrid taxa
are most easily identified by examination of multiple independent character sets.
Tests of hybrid origin are most readily obtained through phylogenetic analysis of
each set of characters (e.g. morphology, allozymes, mtDNA, nuclear loci), with
reticulate origins indicated by discordance among resulting topologies. Arnold
(7) demonstrated the general utility of this approach, implicating introgressive
hybridization in several animal and plant groups.
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Technological advances have simplified identification of mosaic distribu-
tions of characters. Since primers for amplification and sequencing of many
mitochondrial and nuclear genes have been developed, it is possible to closely
examine patterns of genetic variation for a variety of independent loci. This
approach has advantages over use of phenotypic characters such as morphol-
ogy or allozymes because it allows for phylogenetic assessment of the source
taxon for each allele. Careful examination of results derived from each data
set is critical because most parsimonious topologies obtained from different
character sets or loci may appear inconsistent when they are actually not well
supported. Methods for assessment of phylogenetic trees are considered by
Hillis et al (60) and Swofford et al (141).

THEORETICAL CONSIDERATIONS Previous objections to hybrid taxa may have
been influenced by misconceptions concerning geographic scale and the struc-
ture of hybrid zones. Traditionally, gene flow has been considered to be strong
enough to maintain cohesion of each species (39), and hybridization was thought
to occur in continuous zones in which characters graded clinally from one form
to the other. Under such circumstances, formation of hybrid taxa would be
severely constrained by constant gene flow from parental taxa, preventing pop-
ulations of recombinants from stabilizing and establishing independence.

Studies of population structure and hybrid zones, however, have indicated that
this view of geographic structure and hybridization is oversimplified (39, 56).
Organisms have a tendency to track specific favorable environments, fragment-
ing distributions. Because of this behavior, hybridization is often found in tracts
of intermediate habitat or where conditions favoring two taxa are found in prox-
imity. Since such conditions tend to be patchily distributed, hybridization is
often better represented as a mosaic of potentially distinctive interactions among
taxa, each proceeding along an independent evolutionary trajectory. In addi-
tion, environments are not stable, with resulting changes in selection pressures
causing temporal shifts in the genetic composition of populations. Environ-
mental heterogeneity and temporal instability are conducive to formation of
hybrid taxa, especially where patches of hybrids have become isolated from
both parental species.

Rarity of recombinant animal taxa has also influenced perceptions of sig-
nificance. Difficulty detecting such forms is partly responsible for their rarity,
with probability of successful identification dependent upon a variety of fac-
tors. Production of hybrid taxa should exhibit a negative correlation with levels
of divergence among parental forms, with more divergent forms more likely
to produce inviable or sterile hybrids. When the level of divergence among
parental taxa is low, horizontal transfer will be difficult to discriminate from
ancestral polymorphism. In origins involving gene exchange between common
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and rare taxa, as is often the case (64), there are two potential difficulties. Influ-
ence of the less frequent taxon may be difficult to detect because it contributes
proportionally fewer alleles to the recombinant taxon. In addition, rare taxa are
more likely to go extinct, making it impossible to identify the source of some
variants.

Probability of detection will also be reduced by time since origin of recom-
binant lineages. Soon after initiation, recombinant taxa are readily identifiable
by mosaic combinations of character states. As time passes, however, such taxa
will evolve their own unique characteristics, making it more difficult to discrim-
inate between horizontally transmitted and convergent character states. Over
time, internodal branches become relatively shorter and recombination among
parental alleles becomes more likely, making ancient events more difficult to
resolve with allele phylogenies.

Given all of these factors, only a subset of hybrid taxa will be detectable.
Unfortunately, it is not possible to estimate probabilities of origination and
detection, but it seems likely that these factors will severely limit identification
of hybrid origins, making stable recombinant taxa appear much more rare than
they actually are.

INFERENCE FROM STABILIZED RECOMBINANT LINEAGES The frequency of
diploid bisexual taxa of hybrid origin is difficult to assess. Hypothesized in-
stances of hybrid origin are often included as anecdotes in systematic studies
and are not amenable to recovery with standard library search procedures,
whereas many others have not been published and are known only to special-
ists. Of those cases identified (Table 2), many have not been examined with
multiple sets of characters and remain conjecture based on morphological inter-
mediacy. Additional instances of reticulate evolution have been identified (e.g.
7, 7a, 37, 102a); however, taxonomic implications have not been considered.

Tests of hybrid origin can fail to discriminate among alternate hypotheses.
Smith et al (130) proposed a hybrid origin for the suckerCatostomus (Pan-
tosteus) discobulus yarrowion the basis of allozymic and morphological varia-
tion. Crabtree & Buth (26), however, found only limited evidence for con-
tribution from one of the putative parental taxa,C. plebius. Morphologi-
cal evidence was interpreted to represent shared primitive traits retained in
C. d. yarrowi, and it was considered a distinctive form of the other putative pro-
genitor,C. discobolus. Based on intermediacy of morphological and allozymic
characters, Menzel (87) proposed thatLuxilus albeoluswas a taxon generated
by hybridization ofL. cornutusandL. cerasinus. Meagher & Dowling (85)
examined morphological, allozymic, and mtDNA variation for these three taxa
to test this hypothesis. Allozyme alleles supposedly contributed byL. cerasinus
to L. albeoluswere also found in local allopatric populations ofL. cornutus,
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Table 2 Hypothesized examples of bisexual diploid taxa of hybrid
origin

Taxon Evidencea Referenceb

Mollusks
Mercenaria campechiensis texana M, A, mt 103
Cerion“columna”-like M, A 49, 50
Cerion“rubicundum”-like M 49

Insects
Andrena montrosensis M 71, 72
Papilio joanae M, mt 133
Papilio brevicauda M, mt 133

Crustaceans
Bosmina coregoni/longispina M 74
Daphnia wankeltae M, A 57
Daphnia cucullata procurva M, A 75, 123

Fishes
Brachymystax sp. M, A 90, 107
Catostomus discobolus yarrowi M, A 26, 130
Chasmistes brevirostris M 89
Chasmistes liorus mictus M 89
Gila robusta jordani M, A, mt 37
Gila seminuda M, A, mt 31, 131
Luxilus albeolus M, A, mt 85, 87
Mimagoniates microlepis M 86
Pararhynichthys bowersi M, A 48, 136, 137

Amphibians
Ambystoma tigrinum stebbinsi M, A, mt 68

Reptiles
Pseudemoia cryodroma M, A 65

Birds
Passer italiae M 67

Mammals
Canis rufus M, A, mt, u 119,155
Mus musculus molossinus M, A, mt 159

aAbbreviations for character sets are: A, allozymes; M, morphol-
ogy; mt, mtDNA; u, microsatellites.

bAdditional references may be found within those cited.

preventing discrimination of hybrid origin from convergence of allozyme al-
leles or shared ancestral polymorphism. Reconstruction of allele phylogenies
will provide more power for discrimination among these alternatives.

Analysis of proposed hybrid taxa has also yielded support for hybrid origins.
DeMarais et al (31) used morphological, allozymic, and mtDNA data to exam-
ine the hypothesized hybrid origin of the minnowGila seminuda(131). Taken
individually, each character set yielded well-resolved differences between the
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putative parental taxa,G. elegansandG. robusta. Gila seminudawas inter-
mediate toG. robustaandG. elegansin phylogenetic analysis of morpholog-
ical and allozymic characters, but it exhibited mtDNA essentially identical to
G. elegans.Phylogenetic analysis of additionalGila species (37) identified con-
flict between allozymic and mtDNA topologies, patterns best explained by past
episodic introgression.

Several groups of fishes from the western United States exhibit evidence of
past introgression (31, 37, 129), implicating a general causative factor. Ecosys-
tems of this region have gone through dramatic environmental change, including
considerable tectonic activity and progressive aridification (10). These changes
had a severe impact on aquatic ecosystems, likely producing cycles of isolation
and sympatry. Divergent, isolated forms would have been forced together by
desertification, allowing for gene exchange. Later periods of isolation would al-
low for stabilization and independent evolution of hybrid derivatives, resulting
in taxonomic diversification.

The fossil record has provided historical perspective of introgressive ori-
gins for several taxa. Variation inCerion, a speciose group of West Indian
pulmonate land snails, has long perplexed taxonomists and evolutionary biol-
ogists (50). Goodfriend & Gould (49) described two cases inCerion where
introgressive hybridization has yielded temporally stable, morphologically dis-
tinct populations of hybrid origin on Great Inagua, Bahamas. In the first, a
snail with a distinctive flat-topped morphology (C. dimidiatum) invaded over
13,000 ya ago, followed by subsequent transition of the local population to a
morphology intermediate to the invader and the native species,C. columna.
Morphological and genetic analysis of the extant population (50) indicates that
the influence of introgression has been retained long after the disappearance
of C. dimidiatumfrom the fossil record. A second, older introgression event
between invadingC. rubicundumand nativeC. excelsiorproduced snails with
intermediate morphotypes (49). A series of dated fossil shells identified pro-
gressive shifts in morphotype for over 13,000 ya, changing from intermediate
to that ofC. rubicundum. Although morphological characters are good indica-
tors of hybridization, they do not always retain evidence of past introgression.
These populations are indistinguishable fromC. rubicundum, but evidence of
past hybridization likely persists at the genetic level.

Not all cases of hybrid origin are simple to intepret. Cladocerans hybridize
extensively, yielding complexes of intermediate and parental morphotypes
(123). Because of their ability to reproduce asexually as well as sexually,
hybrid populations can be established in isolated ponds from small numbers of
individuals. Distribution of such populations has been attributed to postglacial
vicariant events or recent dispersal, making identification of such populations
as distinct taxa controversial.
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Humans have induced introgressive hybridization among taxa, directly
through introduction of exotic species (e.g.Felis concolor coryi) or modifi-
cation of habitats (e.g.Chasmistes liorus mictus). While the impact varies
from case to case, sometimes sufficient introgression occurs to change entire
taxa. It can be difficult, however, to discriminate human influence from natural
effects. For example, the red wolf (Canis rufus) has been hypothesized to have
originated through hybridization between grey wolf and coyote, stimulated by
human agricultural activity (119, 155). However, available data are equally
consistent with an earlier origin, possibly due to habitat changes associated
with the Pleistocene glaciation.

While not hypothesized to be hybrid taxa, Darwin’s finches provide a strong
example of the significance of introgressive hybridization for evolution and
diversification (51, 52). Long-term field studies of life-history parameters of
entire island populations are possible due to their isolation, allowing for assess-
ment of the frequency of hybridization among species, fates of hybrid individ-
uals, and their contribution to future generations. In the case of hybridization
amongGeospiza fortis, G. scandens, andG. fuliginosaon Daphne Major, one
cohort of F1 hybrids and backcrosses analyzed over a four-year period was
found to have higher average fitnesses than parental types. Because climatic
stochasticity in the Galapagos Islands causes large population fluctuations in
these finches, Grant & Grant (51, 52) hypothesized that hybridization could
introduce genetic variation and reduce inbreeding depression during periods of
small population size. Fitness of hybrids likely fluctuates with normal variation
in climatic conditions, resulting in a long-term balance between hybridization
and selection. Introduction of new variation by hybridization may allow se-
lection to shift finch populations among adaptive peaks (52). The outcome of
hybridization among isolated islands could vary, with each having its own local
complex of interacting species.

CONCLUSIONS

Incidence of Hybrid Taxa
Hybridization and introgression increase genetic diversity through production
of new recombinant genotypes, probably more rapidly than is possible by mu-
tation. Enhanced levels of variability could allow organisms to more readily
track environmental change, leading to increased rates of evolution. A possi-
ble outcome of these processes would be origination of new species through
combination of preexisting characters in other taxa.

Despite the rationale of this perspective, animal hybrid taxa appear to be rela-
tively rare. Misperception and negative attitudes have contributed to an apparent
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scarcity. Bullini & Nascetti (14) noted that many invertebrate hybrid taxa were
not recognized, with parthenogens and polyploids assumed to be derivatives
of bisexual species even when hybridization provided a more parsimonious
explanation. Such attitudes likely stem from the fact that generations of zool-
ogists have been taught that hybridization disrupts coadapted gene complexes,
yielding inferior progeny. Thus, natural selection will favor those individuals
that do not hybridize, with the final stage of speciation requiring perfection of
mechanisms that prevent the wastage of gametes. The inferiority of hybrids and
reinforcement of reproductive isolation have recently been called into question
(e.g. 7a, 19, 91), casting doubt on the negative assessment of hybridization and
introgression.

Rarity is also partly due to difficulty of detection. Identification of hybrid
taxa requires examination of several sets of characters, with some of the best
approaches only recently technologically accessible. Even the best technol-
ogy available may not allow for discrimination among alternate hypotheses
as probability of detection is limited by factors beyond scientific control. To
distinguish spontaneous from hybrid origins (e.g.Hyla versicolor) for poly-
ploid and unisexual taxa, progenitors must be sufficiently different to increase
levels of variation in hybrid progeny. Hybrid origin of bisexual diploid taxa is
likely even more difficult to verify. Events must be recent enough to exclude
convergence as an explanation for observed patterns of variation, and parental
taxa must be sufficiently divergent to rule out ancestral polymorphism (e.g.
Catostomus discobolus yarrowi, Luxilus albeolus).

Rarity of hybrid species could also result from differences in modes of pro-
duction, with the pathway to evolutionary independence for hybrid taxa possibly
more difficult than those taken by typical species. While hybrid unisexual and
polyploid taxa are instantaneously isolated from their progenitors, they must
surmount major barriers to formation and establishment. Production of chro-
mosomal and meiotic conditions that give these forms autonomy will develop
only under a limited set of conditions (93). Once produced, these forms must
survive genetic and ecological constraints such as the accumulation of dele-
terious mutations, inability to find appropriate mates, and competition with
progenitors (151, 156).

Bisexual taxa of hybrid origin do not face the same limitations; however,
evolution of independence will likely be constrained by the homogenizing ef-
fects of gene exchange with progenitors (83). Production and stabilization of
recombinants require a set of conditions that seem best exemplified by patchy
and fluctuating environments (6). In such circumstances, species forced to-
gether in patches may hybridize due to rarity of mates (64) or breakdown of
premating isolation, and resulting progeny may be as fit as parental taxa (7a).
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In these isolated pockets, populations will evolve unique features through com-
binations of characteristics inherited from both parental taxa, and, if isolated
long enough, attain evolutionary independence.

Implications
Even if hybrid taxa are uncommon, rarity should not be equated with insignif-
icance of hybridization and introgression in the evolution and diversification
of animals. Unisexual taxa have acted as conduits of gene exchange among
related sexual species and may allow for reconstitution as new sexual taxa.
Allopolyploidy has been important in diversification, as exemplified by diver-
sity of catostomid fishes. Bogart (11) noted that perceptions of unisexual and
polyploid hybrids are changing, with such taxa proving to be more significant
for speciation than previously believed.

Stabilized recombinant taxa are indicative of a more significant role for gene
exchange in the evolutionary process than generally believed. Introgressive
hybridization among taxa will quickly increase levels of variation, allowing
for rapid response to environmental change. The potential impact of gene ex-
change, however, will be limited by levels of premating reproductive isolation
and reduction in fitness of recombinants relative to progeny of homospecific
matings. The balance of these factors will provide a subset of circumstances
under which introgressive hybridization will be important, likely determined
by the degree of temporal and spatial variability of the biotic and abiotic envi-
ronment and levels of divergence among taxa.

While it is difficult to predict the association between levels of divergence
and fitness of hybrids, variability in habitat is readily observable. Extensive
introgressive hybridization is often associated with habitats disturbed by an-
thropogenic activity (6, 64). More dramatic environmental changes occurred
prior to human influence that would also have been conducive to introgressive
hybridization (10) as indicated by evidence for extensive introgression in the
evolution of several groups of western fishes (31, 37, 129). Association between
habitat and reticulate evolution could be tested, with hybrid taxa expected to be
more common in areas with a history of disturbance.

Several ancillary effects of introgressive hybridization require consideration.
Events leading to hybrid taxa can be very difficult to reconstruct as genes will
have different phylogenetic histories. These problems can extend to phyloge-
netic analyses involving hybrid and nonhybrid taxa, reducing resolution (129)
especially where progenitors of hybrids are not closely related (84). Estimates
of divergence time will also be compromised, providing dating of alleles and
not taxonomic diversification (129).

Increased concern over biodiversity requires consideration of the role of
hybridization in evolution. Extensive introgressive hybridization involving
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introduction of exotic species and habitat disturbance indicates how humans
can influence the natural balance. Instead of simply viewing hybrids as detri-
mental and expendable, the impact of introgression must be appraised on a
case-by-case basis (38, 102). Careful consideration should be provided to bi-
ological systems in which hybridization has played a key role in the evolution
of a taxonomic complex (e.g.Gila). Such systems are not readily amenable to
captive propagation and reintroduction and will require creative management
solutions to preserve this mode of evolution.

While many zoologists have come to appreciate the potential significance of
such events for adaptation, few have considered hybridization and introgres-
sion as creative forces. Unlike the situation for plants, it is still too early to
evaluate the actual incidence of hybrid animal taxa. Many instances have been
put forward, but few have been carefully tested, particularly those involving
bisexual diploid populations. Closer examination of insects has led Bullini &
Nascetti (14) to conclude that hybrid speciation has been more common than
previously believed. Changing attitudes toward hybrids and technological ad-
vances should allow for careful consideration of hypothesized hybrid taxa and
will undoubtedly increase the number of known animal hybrid taxa.
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